Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Infect Dis Model ; 8(2): 318-340, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2282653

ABSTRACT

Vaccines have measurable efficacy obtained first from vaccine trials. However, vaccine efficacy (VE) is not a static measure and long-term population studies are needed to evaluate its performance and impact. COVID-19 vaccines have been developed in record time and the currently licensed vaccines are extremely effective against severe disease with higher VE after the full immunization schedule. To assess the impact of the initial phase of the COVID-19 vaccination rollout programmes, we used an extended Susceptible - Hospitalized - Asymptomatic/mild - Recovered (SHAR) model. Vaccination models were proposed to evaluate different vaccine types: vaccine type 1 which protects against severe disease only but fails to block disease transmission, and vaccine type 2 which protects against both severe disease and infection. VE was assumed as reported by the vaccine trials incorporating the difference in efficacy between one and two doses of vaccine administration. We described the performance of the vaccine in reducing hospitalizations during a momentary scenario in the Basque Country, Spain. With a population in a mixed vaccination setting, our results have shown that reductions in hospitalized COVID-19 cases were observed five months after the vaccination rollout started, from May to June 2021. Specifically in June, a good agreement between modelling simulation and empirical data was well pronounced.

2.
Int J Environ Res Public Health ; 19(19)2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2066047

ABSTRACT

BACKGROUND: The objective of this study was to assess changes in social and clinical determinants of COVID-19 outcomes associated with the first year of COVID-19 vaccination rollout in the Basque population. METHODS: A retrospective study was performed using the complete database of the Basque Health Service (n = 2,343,858). We analyzed data on age, sex, socioeconomic status, the Charlson comorbidity index (CCI), hospitalization and intensive care unit (ICU) admission, and COVID-19 infection by Cox regression models and Kaplan-Meier curves. RESULTS: Women had a higher hazard ratio (HR) of infection (1.1) and a much lower rate of hospitalization (0.7). With older age, the risk of infection fell, but the risks of hospitalization and ICU admission increased. The higher the CCI, the higher the risks of infection and hospitalization. The risk of infection was higher in high-income individuals in all periods (HR = 1.2-1.4) while their risk of hospitalization was lower in the post-vaccination period (HR = 0.451). CONCLUSION: Despite the lifting of many control measures during the second half of 2021, restoring human mobility patterns, the situation could not be defined as syndemic, clinical determinants seeming to have more influence than social ones on COVID-19 outcomes, both before and after vaccination program implementation.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Cohort Studies , Comorbidity , Female , Hospitalization , Humans , Retrospective Studies , Vaccination
3.
Epidemics ; 40: 100599, 2022 09.
Article in English | MEDLINE | ID: covidwho-1907010

ABSTRACT

Around the world, disease surveillance and mathematical modeling have been vital tools for government responses to the COVID-19 pandemic. In the face of a volatile crisis, modeling efforts have had to evolve over time in proposing policies for pandemic interventions. In this paper, we document how mathematical modeling contributed to guiding the trajectory of pandemic policies in the Philippines. We present the mathematical specifications of the FASSSTER COVID-19 compartmental model at the core of the FASSSTER platform, the scenario-based disease modeling and analytics toolkit used in the Philippines. We trace how evolving epidemiological analysis at the national, regional, and provincial levels guided government actions; and conversely, how emergent policy questions prompted subsequent model development and analysis. At various stages of the pandemic, simulated outputs of the FASSSTER model strongly correlated with empirically observed case trajectories (r=94%-99%, p<.001). Model simulations were subsequently utilized to predict the outcomes of proposed interventions, including the calibration of community quarantine levels alongside improvements to healthcare system capacity. This study shows how the FASSSTER model enabled the implementation of a phased approach toward gradually expanding economic activity while limiting the spread of COVID-19. This work points to the importance of locally contextualized, flexible, and responsive mathematical modeling, as applied to pandemic intelligence and for data-driven policy-making in general.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Pandemics , Philippines/epidemiology , Policy , Quarantine
4.
Phys Life Rev ; 40: 65-92, 2022 03.
Article in English | MEDLINE | ID: covidwho-1683512

ABSTRACT

Mathematical models have a long history in epidemiological research, and as the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. Mathematical models describing dengue fever epidemiological dynamics are found back from 1970. Dengue fever is a viral mosquito-borne infection caused by four antigenically related but distinct serotypes (DENV-1 to DENV-4). With 2.5 billion people at risk of acquiring the infection, it is a major international public health concern. Although most of the cases are asymptomatic or mild, the disease immunological response is complex, with severe disease linked to the antibody-dependent enhancement (ADE) - a disease augmentation phenomenon where pre-existing antibodies to previous dengue infection do not neutralize but rather enhance the new infection. Here, we present a 10-year systematic review on mathematical models for dengue fever epidemiology. Specifically, we review multi-strain frameworks describing host-to-host and vector-host transmission models and within-host models describing viral replication and the respective immune response. Following a detailed literature search in standard scientific databases, different mathematical models in terms of their scope, analytical approach and structural form, including model validation and parameter estimation using empirical data, are described and analyzed. Aiming to identify a consensus on infectious diseases modeling aspects that can contribute to public health authorities for disease control, we revise the current understanding of epidemiological and immunological factors influencing the transmission dynamics of dengue. This review provide insights on general features to be considered to model aspects of real-world public health problems, such as the current epidemiological scenario we are living in.


Subject(s)
COVID-19 , Dengue Virus , Dengue , Animals , Antibodies, Viral , Dengue/epidemiology , Humans , Models, Theoretical , Mosquito Vectors , Pandemics , SARS-CoV-2
5.
Infect Dis Poverty ; 10(1): 107, 2021 Aug 09.
Article in English | MEDLINE | ID: covidwho-1350155

ABSTRACT

BACKGROUND: Around the world, controlling the COVID-19 pandemic requires national coordination of multiple intervention strategies. As vaccinations are globally introduced into the repertoire of available interventions, it is important to consider how changes in the local supply of vaccines, including delays in administration, may be addressed through existing policy levers. This study aims to identify the optimal level of interventions for COVID-19 from 2021 to 2022 in the Philippines, which as a developing country is particularly vulnerable to shifting assumptions around vaccine availability. Furthermore, we explore optimal strategies in scenarios featuring delays in vaccine administration, expansions of vaccine supply, and limited combinations of interventions. METHODS: Embedding our work within the local policy landscape, we apply optimal control theory to the compartmental model of COVID-19 used by the Philippine government's pandemic surveillance platform and introduce four controls: (a) precautionary measures like community quarantines, (b) detection of asymptomatic cases, (c) detection of symptomatic cases, and (d) vaccinations. The model is fitted to local data using an L-BFGS minimization procedure. Optimality conditions are identified using Pontryagin's minimum principle and numerically solved using the forward-backward sweep method. RESULTS: Simulation results indicate that early and effective implementation of both precautionary measures and symptomatic case detection is vital for averting the most infections at an efficient cost, resulting in [Formula: see text] reduction of infections compared to the no-control scenario. Expanding vaccine administration capacity to 440,000 full immunizations daily will reduce the overall cost of optimal strategy by [Formula: see text], while allowing for a faster relaxation of more resource-intensive interventions. Furthermore, delays in vaccine administration require compensatory increases in the remaining policy levers to maintain a minimal number of infections. For example, delaying the vaccines by 180 days (6 months) will result in an [Formula: see text] increase in the cost of the optimal strategy. CONCLUSION: We conclude with practical insights regarding policy priorities particularly attuned to the Philippine context, but also applicable more broadly in similar resource-constrained settings. We emphasize three key takeaways of (a) sustaining efficient case detection, isolation, and treatment strategies; (b) expanding not only vaccine supply but also the capacity to administer them, and; (c) timeliness and consistency in adopting policy measures.


Subject(s)
COVID-19 Vaccines/supply & distribution , COVID-19/prevention & control , Algorithms , COVID-19/epidemiology , COVID-19/mortality , COVID-19/transmission , COVID-19 Vaccines/therapeutic use , Developing Countries , Humans , Models, Statistical , Philippines/epidemiology , Population Surveillance
SELECTION OF CITATIONS
SEARCH DETAIL